Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter Nockemann and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail:
gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.019 \AA$
R factor $=0.038$
$w R$ factor $=0.060$
Data-to-parameter ratio $=26.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(tetrabutylammonium) decaiodotetramercurate(II), $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{I}_{10}\right]$

$\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{I}_{10}\right]$ is the first compound for which tetranuclear anions $\left[\mathrm{Hg}_{4} \mathrm{I}_{10}\right]^{2-}$ are observed in its crystal structure. Charge balance is achieved by ordered $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}$cations.

Comment

Halogenomercurate(II) anions show a wide variety of steric arrangements, dependent upon the charge and size of the counter-cation(s) and the stoichiometry (Dean et al., 1994; Grdenic et al. 1965; House et al., 1994; Serezhkin et al., 2001). Up to now, only one compound has been reported for the $\mathrm{Bu}_{4} \mathrm{NI} / \mathrm{HgI}_{2}$ system, viz. $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{HgI}_{3}\right]$ contains trigonal planar [$\left.\mathrm{HgI}_{3}\right]^{-}$units (Goggin et al., 1982).

(I)

Other discrete iodomercurate(II) anions with different cations that have been reported are the tetrahedral $\left[\mathrm{HgI}_{4}\right]^{2-}$ and the octahedral $\left[\mathrm{HgI}_{6}\right]^{4-}$, as well as the dimeric $\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right]^{2-}$ and the trimeric $\left[\mathrm{Hg}_{3} \mathrm{I}_{8}\right]^{2-}$ units.

Recently, we have reported the structure of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]$ (Nockemann \& Meyer, 2002). Bitetrahedral $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]^{2-}$ anions built from two tetrahedra sharing one common edge have two slightly bent HgCl_{2} molecules, with $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ angles of about 170°, attached to either side so that, altogether, it may be considered as the tetrameric $\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]^{2-}$ anion. The two terminal mercuric ions exhibit coordination number $2+1$ in a T -shaped arrangement.

The tetrameric anion $\left[\mathrm{Hg}_{4} \mathrm{I}_{10}\right]^{2-}$ in the crystal structure of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{I}_{10}\right]$ may also be derived from bitetrahedral $\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right]^{2-}$ units to which two HgI_{2} molecules are again attached on either side. The two central tetrahedra are only slightly distorted, with $\mathrm{Hg}-\mathrm{I}$ distances ranging from 2.715 (1) to 2.910 (1) \AA. The outer HgI_{2} molecules show considerably shorter distances, ranging between 2.617 (1) and 2.647 (1) \AA, with $\mathrm{I}-\mathrm{Hg}-\mathrm{I}$ angles of 149.09 (5) and 142.93 (4) ${ }^{\circ}$, but the distances to the iodide ions of the edges shared with the central $\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right]^{2-}$ are, in turn, much longer, 3.080 (1)3.316 (1) A. In summary, in the tetranuclear anion $\left[\mathrm{Hg}_{4} \mathrm{I}_{10}\right]^{2-}$, all mercuric ions may be considered as having coordination number 4, and all tetrahedra share common edges, in contrast to the situation in the tetranuclear $\left[\mathrm{Hg}_{4} \mathrm{Cl}_{10}\right]^{2-}$ where coordination numbers are 4 and 3 (twice each), respectively.

In $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{I}_{10}\right]$, charge balance is achieved by two crystallographically independent, perfectly ordered tetrahedral $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}$cations which are arranged in the crystal

Received 28 March 2003
Accepted 1 April 2003
Online 16 April 2003

Figure 1
Packing diagram of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{I}_{10}\right]$, viewed down the a axis.

Figure 2
View of the $\left[\mathrm{Hg}_{4} \mathrm{I}_{10}\right]^{2-}$ anion, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
structure, together with the anions, in a 2:1 ratio, as Fig. 1 illustrates.

Experimental

$1 \mathrm{mmol}(0.369 \mathrm{~g})$ of tetrabutylammonium iodide, $\left(\mathrm{Bu}_{4}\right) \mathrm{NI}$, and $2 \mathrm{mmol}(0.454 \mathrm{~g})$ of mercuric iodide HgI_{2}, were dissolved by stirring in 50 ml methanol at 323 K until a clear solution was obtained. Yellow single crystals were obtained when the solution was allowed to stand at room temperature for 2 d .

Crystal data

$\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}\right)_{2}\left[\mathrm{Hg}_{4} \mathrm{I}_{10}\right]$
$M_{r}=2556.28$
Triclinic, $P \overline{1}$
$a=11.6809$ (13) \AA
$b=15.7701$ (19) \AA
$c=18.288$ (2) \AA
$\alpha=114.327$ (9) ${ }^{\circ}$
$\beta=104.183(9)^{\circ}$
$\gamma=90.178$ (9) ${ }^{\circ}$
$V=2955.3$ (6) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=2.873 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 37776
reflections
$\theta=3.6-59.3^{\circ}$
$\mu=15.60 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic needle, yellow
$0.30 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

Stoe Imaging Plate Diffraction	11615 independent reflections
System, IPDS-I	5987 reflections with $I>2 \sigma(I)$
φ scans	$R_{\text {int }}=0.107$
Absorption correction: numerical	$\theta_{\max }=26.0^{\circ}$
$(X-S H A P E ;$ Stoe \& Cie, 1998$)$	$h=-12 \rightarrow 14$
$T_{\min }=0.075, T_{\max }=0.210$	$k=-19 \rightarrow 19$
37776 measured reflections	$l=-22 \rightarrow 22$

Figure 3
View of one $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}$cation, showing 50% probability displacement ellipsoids.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.22 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.060$
$S=0.75$
11615 reflections
434 parameters
Extinction correction: SHELXL97
Extinction coefficient: 0.001058 (11)
Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Hg1-I6	2.6347 (11)	Hg4-I8	2.7435 (10)
Hg1-I2	2.6476 (10)	Hg4-I1	2.7659 (9)
Hg1-I1	3.0800 (9)	Hg4-I7	2.8346 (9)
Hg1-I8	3.2065 (10)	Hg4-I10	2.8759 (11)
Hg2-I3	2.7152 (9)	N1-C3	1.508 (13)
Hg2-19	2.7489 (10)	N1-C2	1.514 (13)
Hg2-I10	2.8554 (9)	N1-C1	1.534 (12)
Hg2-17	2.9103 (10)	N1-C4	1.548 (14)
Hg3-15	2.6167 (11)	N2-C19	1.497 (13)
Hg3-I4	2.6231 (11)	N2-C17	1.519 (12)
Hg3-19	3.1534 (9)	N2-C20	1.535 (12)
Hg3-I3	3.3150 (10)	N2-C18	1.541 (12)
I6-Hg1-I2	142.91 (4)	I8-Hg4-I10	113.95 (3)
I6-Hg1-I1	104.66 (3)	I1-Hg4-I10	114.20 (3)
12-Hg1-I1	104.76 (3)	17-Hg4-I10	93.49 (3)
I6-Hg1-I8	104.08 (3)	Hg4-I1-Hg1	84.53 (2)
$\mathrm{I} 2-\mathrm{Hg} 1-\mathrm{I} 8$	99.08 (3)	Hg2-I3-Hg3	80.86 (3)
$\mathrm{I} 1-\mathrm{Hg} 1-\mathrm{I} 8$	87.89 (2)	Hg4-I7-Hg2	86.95 (3)
13-Hg2-19	108.93 (3)	Hg4-I8-Hg1	82.50 (3)
I3-Hg2-I10	120.18 (3)	Hg2-I9-Hg3	83.38 (2)
I9-Hg2-I10	112.23 (3)	$\mathrm{Hg} 2-\mathrm{I} 10-\mathrm{Hg} 4$	87.22 (3)
13-Hg2-I7	108.25 (3)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	113.0 (9)
19-Hg2-17	114.09 (3)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	104.9 (8)
I10-Hg2-I7	92.33 (3)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	111.6 (8)
I5-Hg $3-\mathrm{I} 4$	149.08 (4)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	111.6 (8)
I5-Hg3-19	101.10 (3)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	106.7 (8)
I4-Hg3-19	103.60 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	109.1 (8)
I5-Hg3-I3	94.43 (3)	C19-N2-C17	108.2 (8)
I4-Hg3-I3	105.20 (3)	C19-N2-C20	111.1 (7)
19-Hg3-I3	86.82 (2)	C17-N2-C20	109.4 (7)
I8-Hg4-I1	104.75 (3)	C19-N2-C18	111.5 (8)
18-Hg4-17	114.82 (3)	C17-N2-C18	110.9 (8)
I1-Hg4-17	115.92 (3)	C20-N2-C18	105.7 (7)

H atoms were fixed at calculated positions using the AFIX23 and AFIX33 commands in SHELXL97. The highest peak and deepest hole were located $0.89 \AA$ from I1 and $0.97 \AA$ from I4, respectively.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-STEP32 (Stoe \& Cie, 2000); data reduction: X-RED (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick,

Figure 4
View of the second $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}$cation, showing 50% probability displacement ellipsoids.
1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c, Crystal Impact GbR, Bonn, Germany.
Dean, P. A. W., Vittal, J. J. \& Wu, Y. (1994). Inorg. Chem. 33, 2180-2186.
Goggin, P. L., King, P., McEwan, D. M., Taylor, G. E., Woodward, P. \& Sandström, M. (1982). J. Chem. Soc. Dalton Trans. pp. 875-882.
Grdenic, G. (1965). Quart. Rev. 19, 303.
House, D. A., Robinson, W. T. \& McKee, V. (1994). Coord. Chem. Rev. pp. 135-136, 533-586.
Nockemann, P. \& Meyer, G. (2002). Acta Cryst. E58, m534-m536.
Serezhkin, V. N., Serezhkina, L. B., Ulanov, A. S. \& D'yachenko, O. A. (2001). Crystallogr. Rep. 46, 475-484.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1998). X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2000). X-STEP32. Version 1.06f. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2001). X - $A R E A$ (Version 1.15) and X-RED (Version 1.22). Stoe \& Cie, Darmstadt, Germany.

