metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter Nockemann and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.019 Å R factor = 0.038 wR factor = 0.060 Data-to-parameter ratio = 26.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

Bis(tetrabutylammonium) decaiodotetramercurate(II), (Bu₄N)₂[Hg₄I₁₀]

 $(Bu_4N)_2[Hg_4I_{10}]$ is the first compound for which tetranuclear anions $[Hg_4I_{10}]^{2-}$ are observed in its crystal structure. Charge balance is achieved by ordered $[Bu_4N]^+$ cations. Received 28 March 2003 Accepted 1 April 2003 Online 16 April 2003

Comment

Halogenomercurate(II) anions show a wide variety of steric arrangements, dependent upon the charge and size of the counter-cation(s) and the stoichiometry (Dean *et al.*, 1994; Grdenic *et al.* 1965; House *et al.*, 1994; Serezhkin *et al.*, 2001). Up to now, only one compound has been reported for the Bu_4NI/HgI_2 system, *viz.* (Bu_4N)[HgI_3] contains trigonal planar [HgI_3]⁻ units (Goggin *et al.*, 1982).

Other discrete iodomercurate(II) anions with different cations that have been reported are the tetrahedral $[HgI_4]^{2-}$ and the octahedral $[HgI_6]^{4-}$, as well as the dimeric $[Hg_2I_6]^{2-}$ and the trimeric $[Hg_3I_8]^{2-}$ units.

Recently, we have reported the structure of $(Et_4N)_2[Hg_4Cl_{10}]$ (Nockemann & Meyer, 2002). Bitetrahedral $[Hg_2Cl_6]^{2-}$ anions built from two tetrahedra sharing one common edge have two slightly bent HgCl₂ molecules, with Cl-Hg-Cl angles of about 170°, attached to either side so that, altogether, it may be considered as the tetrameric $[Hg_4Cl_{10}]^{2-}$ anion. The two terminal mercuric ions exhibit coordination number 2 + 1 in a T-shaped arrangement.

The tetrameric anion $[Hg_4I_{10}]^{2-}$ in the crystal structure of $(Bu_4N)_2[Hg_4I_{10}]$ may also be derived from bitetrahedral $[Hg_2I_6]^{2-}$ units to which two HgI_2 molecules are again attached on either side. The two central tetrahedra are only slightly distorted, with Hg–I distances ranging from 2.715 (1) to 2.910 (1) Å. The outer HgI₂ molecules show considerably shorter distances, ranging between 2.617 (1) and 2.647 (1) Å, with I-Hg–I angles of 149.09 (5) and 142.93 (4)°, but the distances to the iodide ions of the edges shared with the central $[Hg_2I_6]^{2-}$ are, in turn, much longer, 3.080 (1)–3.316 (1) Å. In summary, in the tetranuclear anion $[Hg_4I_{10}]^{2-}$, all mercuric ions may be considered as having coordination number 4, and all tetrahedra share common edges, in contrast to the situation in the tetranuclear $[Hg_4CI_{10}]^{2-}$ where coordination numbers are 4 and 3 (twice each), respectively.

In $(Bu_4N)_2[Hg_4I_{10}]$, charge balance is achieved by two crystallographically independent, perfectly ordered tetrahedral $[Bu_4N]^+$ cations which are arranged in the crystal

m236 Nockemann and Meyer • (C₁₆H₃₆N)₂[Hg₄I₁₀] DOI: 10.1107/S1600536803007335 Acta Cryst. (2003). E**59**, m236–m238

Figure 1

Packing diagram of $(Bu_4N)_2[Hg_4I_{10}]$, viewed down the *a* axis.

Figure 2

View of the [Hg₄I₁₀]²⁻ anion, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

structure, together with the anions, in a 2:1 ratio, as Fig. 1 illustrates.

Experimental

1 mmol (0.369 g) of tetrabutylammonium iodide, (Bu₄)NI, and 2 mmol (0.454 g) of mercuric iodide HgI₂, were dissolved by stirring in 50 ml methanol at 323 K until a clear solution was obtained. Yellow single crystals were obtained when the solution was allowed to stand at room temperature for 2 d.

Crystal data

$(C_{16}H_{36}N)_2[Hg_4I_{10}]$	Z = 2
$M_r = 2556.28$	$D_x = 2.873 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 11.6809 (13) Å	Cell parameters from 37776
b = 15.7701 (19) Å	reflections
c = 18.288 (2) Å	$\theta = 3.6-59.3^{\circ}$
$\alpha = 114.327 \ (9)^{\circ}$	$\mu = 15.60 \text{ mm}^{-1}$
$\beta = 104.183 (9)^{\circ}$	T = 293 (2) K
$\gamma = 90.178 \ (9)^{\circ}$	Prismatic needle, yellow
V = 2955.3 (6) Å ³	$0.30 \times 0.15 \times 0.10 \text{ mm}$
Data collection	
Stoe Imaging Plate Diffraction	11615 independent reflections
System, IPDS-I	5987 reflections with $I > 2\sigma(I)$
φ scans	$R_{\rm int} = 0.107$
Absorption correction: numerical	$\theta_{\rm max} = 26.0^{\circ}$
(X-SHAPE; Stoe & Cie, 1998)	$h = -12 \rightarrow 14$
$T_{\rm min} = 0.075, T_{\rm max} = 0.210$	$k = -19 \rightarrow 19$
37776 measured reflections	$l = -22 \rightarrow 22$

Figure 3

View of one [Bu₄N]⁺ cation, showing 50% probability displacement ellipsoids.

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.038$
$wR(F^2) = 0.060$
S = 0.75
11615 reflections
434 parameters
H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2)]$ where $P = (F_{d})$ $+ 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.23$ e Å $\Delta \rho_{\rm min} = -1.22 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.001058 (11)

Table 1

Selected geometric parameters (Å, °).

Hg1-I6	2.6347 (11)	Hg4—I8	2.7435 (10)
Hg1-I2	2.6476 (10)	Hg4—I1	2.7659 (9)
Hg1-I1	3.0800 (9)	Hg4-I7	2.8346 (9)
Hg1-I8	3.2065 (10)	Hg4-I10	2.8759 (11)
Hg2-I3	2.7152 (9)	N1-C3	1.508 (13)
Hg2-I9	2.7489 (10)	N1-C2	1.514 (13)
Hg2-I10	2.8554 (9)	N1-C1	1.534 (12)
Hg2-I7	2.9103 (10)	N1-C4	1.548 (14)
Hg3-I5	2.6167 (11)	N2-C19	1.497 (13)
Hg3-I4	2.6231 (11)	N2-C17	1.519 (12)
Hg3-I9	3.1534 (9)	N2-C20	1.535 (12)
Hg3-I3	3.3150 (10)	N2-C18	1.541 (12)
I6-Hg1-I2	142.91 (4)	I8-Hg4-I10	113.95 (3)
I6-Hg1-I1	104.66 (3)	I1-Hg4-I10	114.20 (3)
I2-Hg1-I1	104.76 (3)	I7-Hg4-I10	93.49 (3)
I6-Hg1-I8	104.08 (3)	Hg4-I1-Hg1	84.53 (2)
I2-Hg1-I8	99.08 (3)	Hg2-I3-Hg3	80.86 (3)
I1-Hg1-I8	87.89 (2)	Hg4-I7-Hg2	86.95 (3)
I3-Hg2-I9	108.93 (3)	Hg4-I8-Hg1	82.50 (3)
I3-Hg2-I10	120.18 (3)	Hg2-I9-Hg3	83.38 (2)
I9-Hg2-I10	112.23 (3)	Hg2-I10-Hg4	87.22 (3)
I3-Hg2-I7	108.25 (3)	C3-N1-C2	113.0 (9)
I9-Hg2-I7	114.09 (3)	C3-N1-C1	104.9 (8)
I10-Hg2-I7	92.33 (3)	C2-N1-C1	111.6 (8)
I5-Hg3-I4	149.08 (4)	C3-N1-C4	111.6 (8)
I5-Hg3-I9	101.10 (3)	C2-N1-C4	106.7 (8)
I4-Hg3-I9	103.60 (3)	C1-N1-C4	109.1 (8)
I5-Hg3-I3	94.43 (3)	C19-N2-C17	108.2 (8)
I4-Hg3-I3	105.20 (3)	C19-N2-C20	111.1 (7)
I9-Hg3-I3	86.82 (2)	C17-N2-C20	109.4 (7)
I8-Hg4-I1	104.75 (3)	C19-N2-C18	111.5 (8)
I8-Hg4-I7	114.82 (3)	C17-N2-C18	110.9 (8)
I1-Hg4-I7	115.92 (3)	C20-N2-C18	105.7 (7)

H atoms were fixed at calculated positions using the AFIX23 and AFIX33 commands in SHELXL97. The highest peak and deepest hole were located 0.89 Å from I1 and 0.97 Å from I4, respectively.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-STEP32 (Stoe & Cie, 2000); data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick,

Figure 4

View of the second $[\mathrm{Bu}_4\mathrm{N}]^+$ cation, showing 50% probability displacement ellipsoids.

1997); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL*97.

References

- Brandenburg, K. (1999). *DIAMOND*. Version 2.1c, Crystal Impact GbR, Bonn, Germany.
- Dean, P. A. W., Vittal, J. J. & Wu, Y. (1994). Inorg. Chem. 33, 2180-2186.
- Goggin, P. L., King, P., McEwan, D. M., Taylor, G. E., Woodward, P. & Sandström, M. (1982). J. Chem. Soc. Dalton Trans. pp. 875–882.
- Grdenic, G. (1965). Quart. Rev. 19, 303.
- House, D. A., Robinson, W. T. & McKee, V. (1994). Coord. Chem. Rev. pp. 135–136, 533–586.
- Nockemann, P. & Meyer, G. (2002). Acta Cryst. E58, m534-m536.
- Serezhkin, V. N., Serezhkina, L. B., Ulanov, A. S. & D'yachenko, O. A. (2001). Crystallogr. Rep. 46, 475–484.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (2000). X-STEP32. Version 1.06f. Stoe & Cie, Darmstadt, Germany.